aboutsummaryrefslogtreecommitdiffstats
path: root/meowpp/geo/Vectors.h
blob: 78fcc42b89e925b2eade4bad752fd59e463afe9f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#ifndef   geo_Vectors_H__
#define   geo_Vectors_H__

#include "../math/utility.h"
#include "../math/Vector.h"
#include "../math/Matrix.h"

#include <cmath>

namespace meow{

/*!
 * @brief 2D's vector
 *
 * @author cat_leopard
 */
template<class Scalar>
class Vector2D {
private:
  Scalar x_, y_;
public:
  //! @brief consturctor (0, 0)
  Vector2D(): x_(0), y_(0) {
  }

  //! @brief consturctor (from another Vector2D)
  Vector2D(Vector2D const& v): x_(v.x_), y_(v.y_) {
  }

  //! @brief constructor (s, s)
  Vector2D(Scalar const& s): x_(s), y_(s) {
  }

  //! @brief constructor (sx, sy)
  Vector2D(Scalar const& sx, Scalar const& sy): x_(sx), y_(sy) {
  }

  //! @brief constructor (from another Vector)
  Vector2D(Vector<Scalar> const& v): x_(v(0)), y_(v(1)) {
  }

  //! @brief constructor (from another Vector, i-th)
  Vector2D(Vector<Scalar> const& v, size_t i): x_(v(i)), y_(v(i + 1)) {
  }

  //! @brief destructor
  ~Vector2D() {
  }

  //! @brief copy
  Vector2D& copyFrom(Vector2D const& v) {
    return xy(v.x(), v.y());
  }

  //! @brief access x
  Scalar const& x() const {
    return x_;
  }

  //! @brief access x with non constant reference
  Scalar& xGet() {
    return x_;
  }

  //! @brief access y with non constant reference
  Scalar& yGet() {
    return y_;
  }

  //! @brief access y
  Scalar const& y() const {
    return y_;
  }

  //! @brief modify x
  Scalar const& x(Scalar const& s) {
    x_ = s;
    return x();
  }

  //! @brief modify y
  Scalar const& y(Scalar const& s) {
    y_ = s;
    return y();
  }

  //! @brief modify x and y
  Vector2D& xy(Scalar const& sx, Scalar const& sy){
    x(sx);
    y(sy);
    return *this;
  }

  //! @brief access the \c i -th scalar (0 => x, 1 => y)
  Scalar const& scalar(size_t i) const {
    return (i == 0 ? x() : (i == 1 ? y() : Scalar(0)));
  }

  //! @brief modivy the \c i -th scalar (0 => x, 1 => y)
  Scalar const& scalar(size_t i, Scalar const& s) {
    return (i == 0 ? x(s) : (i == 1 ? y(s) : s));
  }

  //! @brief return \a +(*this)
  Vector2D positive() const {
    return *this;
  }

  //! @brief return \a -(*this)
  Vector2D negative() const {
    return Vector2D(-x(), -y());
  }

  //! @brief return \a count-clockwise \a rotate \a 90 \a degree of itself
  Vector2D right()const{
    return Vector2D(-y(), x());
  }

  //! @brief return \a (*this)+v
  Vector2D add(Vector2D const& v) const {
    return Vector2D(x() + v.x(), y() + v.y());
  }

  //! @brief Let itself add v
  Vector2D& added(Vector2D const& v) {
    return xy(x() + v.x(), y() + v.y());
  }

  //! @brief return \a (*this)-v
  Vector2D sub(Vector2D const& v) const {
    return Vector2D(x() - v.x(), y() - v.y());
  }

  //! @brief Let itself substract v
  Vector2D& subed(Vector2D const& v) {
    return xy(x() - v.x(), y() - v.y());
  }

  //! @brief return \a (*this)*s , where s is a scalar
  Vector2D mul(Scalar const& s) const {
    return Vector2D(x() * s, y() * s);
  }

  //! @brief Let itself mulitple s
  Vector2D& muled(Scalar const& s) {
    return xy(x() * s, y() * s);
  }

  //! @brief return \a (*this)/s , where s is a scalar
  Vector2D div(Scalar const& s) const {
    return Vector2D(x() / s, y() / s);
  }

  //! @brief Let itself divide s
  Vector2D& dived(Scalar const& s) {
    return xy(x() / s, y() / s);
  }

  //! @brief same as dot(v)
  Scalar mul(Vector2D const& v) const {
    return dot(v);
  }

  //! @brief dot
  Scalar dot(Vector2D const& v) const {
    return x() * v.x() + y() * v.y();
  }

  //! @brief cross
  Scalar cross(Vector2D const& v) const {
    return x() * v.y() - y() * v.x();
  }

  //! @brief sqrt of length2
  Scalar length() const {
    return Scalar(sqrt(double(length2())));
  }

  //! @brief same as \a dot(*this)
  Scalar length2() const {
    return dot(*this);
  }

  //! @brief return normalize form of itself
  Vector2D normalize() const {
    return div(length());
  }

  //! @brief normalize itself
  Vector2D& normalized() {
    return dived(length());
  }

  //! @brief return rotate \a theta degree of itself
  Vector2D rotate(Scalar const& theta) const {
    Scalar cs(cos(-double(theta)));
    Scalar sn(sin(-double(theta)));
    Vector2D<Scalar> new_x(cs, sn);
    return Vector2D(new_x.dot(*this), new_x.cross(*this));
  }

  //! @brief Let itself rotate \a theta degree
  Vector2D& rotated(Scalar const& theta) {
    return copyFrom(rotate(theta));
  }

  //! @brief return reflect from given vector \a v
  Vector2D reflect(Vector2D const& v) const {
    return v.mul(v.dot(*this) * 2 / v.length2()).sub(*this);
  }

  //! @brief reflect itself given vector \a v
  Vector2D& reflected(Vector2D const& v) {
    return copyFrom(reflecte(v));
  }

  //! @brief return a 2x1 matrix form of itself
  Matrix<Scalar> matrix() const {
    static Matrix<Scalar> ret(2, 1, Scalar(0));
    ret(0, 0, x());
    ret(1, 0, y());
    return ret;
  }

  //! @brief return a 3x1 matrix form of itself
  Matrix<Scalar> matrix(Scalar const& homo) const {
    static Matrix<Scalar> ret(3, 1, Scalar(0));
    ret(0, 0, x());
    ret(1, 0, y());
    ret(2, 0, homo);
    return ret;
  }

  Scalar const& operator()(size_t n) const {
    return (n == 0 ? x() : y());
  }

  Vector2D& operator()(Scalar const& sx, Scalar const& sy) {
    return xy(sx, sy);
  }

  Vector2D operator+() const { return positive(); }
  Vector2D operator-() const { return negative(); }
  Vector2D operator~() const { return right   (); }

  Vector2D operator+(Vector2D const& v) const { return add(v); }
  Vector2D operator-(Vector2D const& v) const { return sub(v); }
  Vector2D operator*(Scalar   const& s) const { return mul(s); }
  Vector2D operator/(Scalar   const& s) const { return div(s); }
  Scalar   operator*(Vector2D const& v) const { return mul(v); }

  Vector2D& operator=(Vector2D const& v) { return copyFrom(v); }
  Vector2D& operator+=(Vector2D const& v) { return added(v); }
  Vector2D& operator-=(Vector2D const& v) { return subed(v); }
  Vector2D& operator*=(Scalar   const& s) { return muled(s); }
  Vector2D& operator/=(Scalar   const& s) { return dived(s); }
};

/*!
 * @brief 3D's vector
 *
 * @author cat_leopard
 */
template<class Scalar>
class Vector3D{
private:
  Scalar x_, y_, z_;
public:
  //! @brief consturctor (0, 0)
  Vector3D(): x_(0), y_(0), z_(0) {
  }

  //! @brief consturctor (from another Vector3D)
  Vector3D(Vector3D const& v): x_(v.x_), y_(v.y_), z_(v.z_) {
  }

  //! @brief constructor (s, s)
  Vector3D(Scalar const& s): x_(s), y_(s), z_(s) {
  }

  //! @brief constructor (sx, sy)
  Vector3D(Scalar const& sx,
           Scalar const& sy,
           Scalar const& sz): x_(sx), y_(sy), z_(sz) {
  }

  //! @brief constructor (from another Vector)
  Vector3D(Vector<Scalar> const& v): x_(v(0)), y_(v(1)), z_(v(2)) {
  }

  //! @brief constructor (from another Vector, i-th)
  Vector3D(Vector<Scalar> const& v, size_t i): x_(v(i)), y_(v(i+1)), z_(v(i+2)){
  }

  //! @brief destructor
  ~Vector3D(){
  }

  //! @brief copy
  Vector3D& copyFrom(Vector3D const& v){
    return xyz(v.x(), v.y(), v.z());
  }

  //! @brief access x
  Scalar const& x() const{
    return x_;
  }

  //! @brief access y
  Scalar const& y() const{
    return y_;
  }

  //! @brief access z
  Scalar const& z() const{
    return z_;
  }

  //! @brief access x with non constant reference
  Scalar& xGet() {
    return x_;
  }

  //! @brief access y with non constant reference
  Scalar& yGet() {
    return y_;
  }

  //! @brief access z with non constant reference
  Scalar& zGet() {
    return z_;
  }

  //! @brief modify x
  Scalar const& x(Scalar const& s) {
    x_ = s;
    return x();
  }

  //! @brief modify y
  Scalar const& y(Scalar const& s) {
    y_ = s;
    return y();
  }

  //! @brief modify z
  Scalar const& z(Scalar const& s) {
    z_ = s;
    return z();
  }

  //! @brief modify x and y
  Vector3D& xyz(Scalar const& sx, Scalar const& sy, Scalar const& sz) {
    x(sx);
    y(sy);
    z(sz);
    return *this;
  }

  //! @brief access the \c i -th scalar (0 => x, 1 => y, 2 => z) {
  Scalar const& scalar(size_t i) const {
    return (i == 0 ? x() : (i == 1 ? y() : (i == 2 ? z() : Scalar(0))));
  }

  //! @brief modivy the \c i -th scalar (0 => x, 1 => y, 2 => z)
  Scalar const& scalar(size_t i, Scalar const& s) {
    return (i == 0 ? x(s) : (i == 1 ? y(s) : (i == 2 ? z(s) : s )));
  }

  //! @brief return \a +(*this)
  Vector3D positive() const {
    return *this;
  }

  //! @brief return \a -(*this)
  Vector3D negative() const {
    return Vector3D(-x(), -y(), -z());
  }

  //! @brief return \a (*this)+v
  Vector3D add(Vector3D const& v) const {
    return Vector3D(x() + v.x(), y() + v.y(), z() + v.z());
  }

  //! @brief Let itself add v
  Vector3D& added(Vector3D const& v) {
    return xyz(x() + v.x(), y() + v.y(), z() + v.z());
  }

  //! @brief return \a (*this)-v
  Vector3D sub(Vector3D const& v) const {
    return Vector3D(x() - v.x(), y() - v.y(), z() - v.z());
  }

  //! @brief Let itself substract v
  Vector3D& subed(Vector3D const& v) {
    return xyz(x() - v.x(), y() - v.y(), z() - v.z());
  }

  //! @brief return \a (*this)*s , where s is a scalar
  Vector3D mul(Scalar const& s) const {
    return Vector3D(x() * s, y() * s, z() * s);
  }

  //! @brief Let itself mulitple s
  Vector3D& muled(Scalar const& s) {
    return xyz(x() * s, y() * s, z() * s);
  }

  //! @brief return \a (*this)/s , where s is a scalar
  Vector3D div(Scalar const& s) const {
    return Vector3D(x() / s, y() / s, z() / s);
  }

  //! @brief Let itself divide s
  Vector3D& dived(Scalar const& s) {
    return xyz(x() / s, y() / s, z() / s);
  }

  //! @brief same as dot(v)
  Scalar mul(Vector3D const& v) const {
    return dot(v);
  }

  //! @brief dot
  Scalar dot(Vector3D const& v) const {
    return x() * v.x() + y() * v.y() + z() * v.z();
  }

  //! @brief cross
  Vector3D cross(Vector3D const& v) const {
    return Vector3D(y() * v.z() - z() * v.y(),
                    z() * v.x() - x() * v.z(),
                    x() * v.y() - y() * v.x());
  }

  //! @brief crossed
  Vector3D& crossed(Vector3D const& v) {
    return copyFrom(cross(v));
  }

  //! @brief sqrt of length2
  Scalar length() const {
    return Scalar(sqrt(double(length2())));
  }

  //! @brief same as \a dot(*this)
  Scalar length2() const {
    return dot(*this);
  }

  //! @brief return normalize form of itself
  Vector3D normalize() const {
    return div(length());
  }

  //! @brief normalize itself
  Vector3D& normalized() {
    return dived(length());
  }

  //! @brief return rotate \a theta degree by \a axis of itself
  Vector3D rotate(Vector3D const& axis, double theta) const {
    Vector3D a(axis.normalize());
    Vector3D xx(sub(a)        .mul(cos(theta)));
    Vector3D yy(a.cross(*this).mul(sin(theta)));
    return a.mul(a.dot(*this)).add(xx).add(yy);
  }

  //! @brief Let itself rotate \a theta degree
  Vector3D& rotated(Vector3D const& axis, double theta) {
    return copyFrom(rotate(axis, theta));
  }

  //! @brief return reflect from given vector \a v
  Vector3D reflect(Vector3D const& v) const {
    return v.mul(v.dot(*this) * 2 / v.length2()).sub(*this);
  }

  //! @brief reflect itself given vector \a v
  Vector3D& reflected(Vector3D const& v) {
    return copyFrom(reflecte(v));
  }

  //! @brief return a 3x1 matrix form of itself
  Matrix<Scalar> matrix() const {
    static Matrix<Scalar> ret(3, 1, Scalar(0));
    ret(0, 0, x());
    ret(1, 0, y());
    ret(2, 0, z());
    return ret;
  }

  //! @brief return a 4x1 matrix form of itself
  Matrix<Scalar> matrix(Scalar const& homo) const {
    static Matrix<Scalar> ret(4, 1, Scalar(0));
    ret(0, 0, x());
    ret(1, 0, y());
    ret(2, 0, z());
    ret(3, 0, homo);
    return ret;
  }

  Scalar const& operator()(size_t n) const {
    return (n == 0 ? x() : (n == 1 ? y() : z()));
  }

  Vector3D& operator()(Scalar const& sx, Scalar const& sy, Scalar const& sz) {
    return xyz(sx, sy, sz);
  }

  Vector3D operator+() const { return positive(); }
  Vector3D operator-() const { return negative(); }

  Vector3D operator+(Vector3D const& v) const { return add(v); }
  Vector3D operator-(Vector3D const& v) const { return sub(v); }
  Vector3D operator*(Scalar   const& s) const { return mul(s); }
  Vector3D operator/(Scalar   const& s) const { return div(s); }
  Scalar   operator*(Vector3D const& v) const { return mul(v); }

  Vector3D& operator=(Vector3D const& v) { return copyFrom(v); }
  Vector3D& operator+=(Vector3D const& v) { return added(v); }
  Vector3D& operator-=(Vector3D const& v) { return subed(v); }
  Vector3D& operator*=(Scalar   const& s) { return muled(s); }
  Vector3D& operator/=(Scalar   const& s) { return dived(s); }
};

} // meow

#endif // geo_Vectors_H__