aboutsummaryrefslogtreecommitdiffstats
path: root/help/C/using-categories.page
blob: 72d6dac27ad4e9efb44ffc7b86e91792a141d9c9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<page xmlns="http://projectmallard.org/1.0/" xmlns:its="http://www.w3.org/2005/11/its"
      type="topic" id="using-categories">

  <info>
    <desc>Using and managing categories for appointments, contacts, memos and tasks.</desc>

    <link type="guide" xref="contacts-organizing" />
    <link type="guide" xref="tasks-organizing" />
    <link type="guide" xref="calendar-organizing" />

    <revision pkgversion="3.3.91" version="0.6" date="2012-02-19" status="final"/>
    <credit type="author">
      <name>Andre Klapper</name>
      <email>ak-47@gmx.net</email>
    </credit>
 <credit type="author">
   <name>Novell, Inc</name> <!-- Content partially from http://library.gnome.org/users/evolution/2.32/usage-contact-organize.html.en#usage-contact-organize-group-category -->
 </credit>
    <license>
      <p>Creative Commons Share Alike 3.0</p>
    </license>    

  </info>

<title>Using Categories</title>

<p>Another way to group contacts, appointments, tasks and memos (summarized by the term "objects" in the following text) is to mark them as belonging to different categories. You can mark an object as being in several categories or no category at all. For example in your address book, you put a friend in the "Business" category because he works with you and the "Friends" category because he is a friend.</p>

<note><p>To display only the objects in a particular category, select the corresponding category in the quick <link xref="searching-items">search</link> bar.</p></note>

<section id="set-category-for-object">
<title>Setting categories for an object</title>

<p>To mark an object as belonging to a category,</p>
<steps>
<item><p>Double-click the object to bring up the corresponding editor.</p></item>
<item><p>Click <gui style="button">Categories...</gui>. (If this button is not available, select <guiseq><gui>View</gui><gui>Categories</gui></guiseq>.)</p></item>
<item><p>Select the category from the list. You can select as many or as few categories as you like.</p></item>
</steps>

</section>

<section id="managing-categories">
<title>Adding and managing categories</title>

<p>If the default list of categories does not suit your needs, you can add your own categories either directly via <guiseq><gui>Edit</gui><gui>Available Categories</gui></guiseq>, or indirectly when editing an object:</p>
<steps>
<item><p>Double-click any object to bring up the corresponding editor.</p></item>
<item><p>Click <gui style="button">Categories...</gui>. (If this button is not available, select <guiseq><gui>View</gui><gui>Categories</gui></guiseq>.)</p></item>
<item><p>Enter the new category in the entry box at the top.</p></item>
<item><p>Click <gui style="button">OK</gui>.</p></item>
<item><p>You can now see the category in the <gui>Categories</gui> text field in the editor.</p></item>
<item><p>Click <gui style="button">OK</gui>.</p></item>
</steps>

<p>In the <gui>Categories Editor</gui> you can edit or set the color and icon for each category available by clicking <gui style="button">Edit</gui> at the bottom of the <gui>Categories</gui> window. Press <gui style="button">Delete</gui> to delete categories from the list.</p>
</section>

</page>
href='#n368'>368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/*
    This file is part of solidity.

    solidity is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    solidity is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with solidity.  If not, see <http://www.gnu.org/licenses/>.
*/
/**
 * @author Christian <c@ethdev.com>
 * @date 2015
 * Type analyzer and checker.
 */

#include <libsolidity/analysis/TypeChecker.h>
#include <libsolidity/ast/AST.h>

#include <libyul/AsmAnalysis.h>
#include <libyul/AsmAnalysisInfo.h>
#include <libyul/AsmData.h>
#include <libyul/backends/evm/EVMDialect.h>

#include <liblangutil/ErrorReporter.h>

#include <libdevcore/Algorithms.h>
#include <libdevcore/StringUtils.h>

#include <boost/algorithm/cxx11/all_of.hpp>
#include <boost/algorithm/string/join.hpp>
#include <boost/algorithm/string/predicate.hpp>

#include <memory>
#include <vector>

using namespace std;
using namespace dev;
using namespace langutil;
using namespace dev::solidity;

namespace
{

bool typeSupportedByOldABIEncoder(Type const& _type)
{
    if (_type.dataStoredIn(DataLocation::Storage))
        return true;
    if (_type.category() == Type::Category::Struct)
        return false;
    if (_type.category() == Type::Category::Array)
    {
        auto const& arrayType = dynamic_cast<ArrayType const&>(_type);
        auto base = arrayType.baseType();
        if (!typeSupportedByOldABIEncoder(*base) || (base->category() == Type::Category::Array && base->isDynamicallySized()))
            return false;
    }
    return true;
}

}


bool TypeChecker::checkTypeRequirements(ASTNode const& _contract)
{
    _contract.accept(*this);
    return Error::containsOnlyWarnings(m_errorReporter.errors());
}

TypePointer const& TypeChecker::type(Expression const& _expression) const
{
    solAssert(!!_expression.annotation().type, "Type requested but not present.");
    return _expression.annotation().type;
}

TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const
{
    solAssert(!!_variable.annotation().type, "Type requested but not present.");
    return _variable.annotation().type;
}

bool TypeChecker::visit(ContractDefinition const& _contract)
{
    m_scope = &_contract;

    ASTNode::listAccept(_contract.baseContracts(), *this);

    for (auto const& n: _contract.subNodes())
        n->accept(*this);

    return false;
}

void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment)
{
    TupleType const& lhs = dynamic_cast<TupleType const&>(*type(_assignment.leftHandSide()));
    TupleType const& rhs = dynamic_cast<TupleType const&>(*type(_assignment.rightHandSide()));

    if (lhs.components().size() != rhs.components().size())
    {
        solAssert(m_errorReporter.hasErrors(), "");
        return;
    }

    size_t storageToStorageCopies = 0;
    size_t toStorageCopies = 0;
    for (size_t i = 0; i < lhs.components().size(); ++i)
    {
        ReferenceType const* ref = dynamic_cast<ReferenceType const*>(lhs.components()[i].get());
        if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer())
            continue;
        toStorageCopies++;
        if (rhs.components()[i]->dataStoredIn(DataLocation::Storage))
            storageToStorageCopies++;
    }
    if (storageToStorageCopies >= 1 && toStorageCopies >= 2)
        m_errorReporter.warning(
            _assignment.location(),
            "This assignment performs two copies to storage. Since storage copies do not first "
            "copy to a temporary location, one of them might be overwritten before the second "
            "is executed and thus may have unexpected effects. It is safer to perform the copies "
            "separately or assign to storage pointers first."
        );
}

TypePointers TypeChecker::typeCheckABIDecodeAndRetrieveReturnType(FunctionCall const& _functionCall, bool _abiEncoderV2)
{
    vector<ASTPointer<Expression const>> arguments = _functionCall.arguments();
    if (arguments.size() != 2)
        m_errorReporter.typeError(
            _functionCall.location(),
            "This function takes two arguments, but " +
            toString(arguments.size()) +
            " were provided."
        );
    if (arguments.size() >= 1 && !type(*arguments.front())->isImplicitlyConvertibleTo(ArrayType::bytesMemory()))
        m_errorReporter.typeError(
            arguments.front()->location(),
            "Invalid type for argument in function call. "
            "Invalid implicit conversion from " +
            type(*arguments.front())->toString() +
            " to bytes memory requested."
        );

    if (arguments.size() < 2)
        return {};

    // The following is a rather syntactic restriction, but we check it here anyway:
    // The second argument has to be a tuple expression containing type names.
    TupleExpression const* tupleExpression = dynamic_cast<TupleExpression const*>(arguments[1].get());
    if (!tupleExpression)
    {
        m_errorReporter.typeError(
            arguments[1]->location(),
            "The second argument to \"abi.decode\" has to be a tuple of types."
        );
        return {};
    }

    TypePointers components;
    for (auto const& typeArgument: tupleExpression->components())
    {
        solAssert(typeArgument, "");
        if (TypeType const* argTypeType = dynamic_cast<TypeType const*>(type(*typeArgument).get()))
        {
            TypePointer actualType = argTypeType->actualType();
            solAssert(actualType, "");
            // We force memory because the parser currently cannot handle
            // data locations. Furthermore, storage can be a little dangerous and
            // calldata is not really implemented anyway.
            actualType = ReferenceType::copyForLocationIfReference(DataLocation::Memory, actualType);
            // We force address payable for address types.
            if (actualType->category() == Type::Category::Address)
                actualType = make_shared<AddressType>(StateMutability::Payable);
            solAssert(
                !actualType->dataStoredIn(DataLocation::CallData) &&
                !actualType->dataStoredIn(DataLocation::Storage),
                ""
            );
            if (!actualType->fullEncodingType(false, _abiEncoderV2, false))
                m_errorReporter.typeError(
                    typeArgument->location(),
                    "Decoding type " + actualType->toString(false) + " not supported."
                );
            components.push_back(actualType);
        }
        else
        {
            m_errorReporter.typeError(typeArgument->location(), "Argument has to be a type name.");
            components.push_back(make_shared<TupleType>());
        }
    }
    return components;
}

void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance)
{
    auto base = dynamic_cast<ContractDefinition const*>(&dereference(_inheritance.name()));
    solAssert(base, "Base contract not available.");

    if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
        m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit.");

    if (base->isLibrary())
        m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from.");

    auto const& arguments = _inheritance.arguments();
    TypePointers parameterTypes;
    if (base->contractKind() != ContractDefinition::ContractKind::Interface)
        // Interfaces do not have constructors, so there are zero parameters.
        parameterTypes = ContractType(*base).newExpressionType()->parameterTypes();

    if (arguments)
    {
        if (parameterTypes.size() != arguments->size())
        {
            m_errorReporter.typeError(
                _inheritance.location(),
                "Wrong argument count for constructor call: " +
                toString(arguments->size()) +
                " arguments given but expected " +
                toString(parameterTypes.size()) +
                ". Remove parentheses if you do not want to provide arguments here."
            );
        }
        for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i)
            if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
                m_errorReporter.typeError(
                    (*arguments)[i]->location(),
                    "Invalid type for argument in constructor call. "
                    "Invalid implicit conversion from " +
                    type(*(*arguments)[i])->toString() +
                    " to " +
                    parameterTypes[i]->toString() +
                    " requested."
                );
    }
}

void TypeChecker::endVisit(UsingForDirective const& _usingFor)
{
    ContractDefinition const* library = dynamic_cast<ContractDefinition const*>(
        _usingFor.libraryName().annotation().referencedDeclaration
    );
    if (!library || !library->isLibrary())
        m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected.");
}

bool TypeChecker::visit(StructDefinition const& _struct)
{
    for (ASTPointer<VariableDeclaration> const& member: _struct.members())
        if (!type(*member)->canBeStored())
            m_errorReporter.typeError(member->location(), "Type cannot be used in struct.");

    // Check recursion, fatal error if detected.
    auto visitor = [&](StructDefinition const& _struct, CycleDetector<StructDefinition>& _cycleDetector, size_t _depth)
    {
        if (_depth >= 256)
            m_errorReporter.fatalDeclarationError(_struct.location(), "Struct definition exhausting cyclic dependency validator.");

        for (ASTPointer<VariableDeclaration> const& member: _struct.members())
        {
            Type const* memberType = type(*member).get();
            while (auto arrayType = dynamic_cast<ArrayType const*>(memberType))
            {
                if (arrayType->isDynamicallySized())
                    break;
                memberType = arrayType->baseType().get();
            }
            if (auto structType = dynamic_cast<StructType const*>(memberType))
                if (_cycleDetector.run(structType->structDefinition()))
                    return;
        }
    };
    if (CycleDetector<StructDefinition>(visitor).run(_struct) != nullptr)
        m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition.");

    bool insideStruct = true;
    swap(insideStruct, m_insideStruct);
    ASTNode::listAccept(_struct.members(), *this);
    m_insideStruct = insideStruct;

    return false;
}

bool TypeChecker::visit(FunctionDefinition const& _function)
{
    bool isLibraryFunction = _function.inContractKind() == ContractDefinition::ContractKind::Library;
    if (_function.isPayable())
    {
        if (isLibraryFunction)
            m_errorReporter.typeError(_function.location(), "Library functions cannot be payable.");
        if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface())
            m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable.");
    }
    for (ASTPointer<VariableDeclaration> const& var: _function.parameters() + _function.returnParameters())
    {
        if (type(*var)->category() == Type::Category::Mapping)
        {
            if (!type(*var)->dataStoredIn(DataLocation::Storage))
                m_errorReporter.typeError(var->location(), "Mapping types can only have a data location of \"storage\"." );
            else if (!isLibraryFunction && _function.isPublic())
                m_errorReporter.typeError(var->location(), "Mapping types for parameters or return variables can only be used in internal or library functions.");
        }
        else
        {
            if (!type(*var)->canLiveOutsideStorage() && _function.isPublic())
                m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
            if (_function.isPublic() && !(type(*var)->interfaceType(isLibraryFunction)))
                m_errorReporter.fatalTypeError(var->location(), "Internal or recursive type is not allowed for public or external functions.");
        }
        if (
            _function.isPublic() &&
            !_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
            !typeSupportedByOldABIEncoder(*type(*var))
        )
            m_errorReporter.typeError(
                var->location(),
                "This type is only supported in the new experimental ABI encoder. "
                "Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
            );

        var->accept(*this);
    }
    set<Declaration const*> modifiers;
    for (ASTPointer<ModifierInvocation> const& modifier: _function.modifiers())
    {
        visitManually(
            *modifier,
            _function.isConstructor() ?
            dynamic_cast<ContractDefinition const&>(*_function.scope()).annotation().linearizedBaseContracts :
            vector<ContractDefinition const*>()
        );
        Declaration const* decl = &dereference(*modifier->name());
        if (modifiers.count(decl))
        {
            if (dynamic_cast<ContractDefinition const*>(decl))
                m_errorReporter.declarationError(modifier->location(), "Base constructor already provided.");
        }
        else
            modifiers.insert(decl);
    }
    if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface)
    {
        if (_function.isImplemented())
            m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation.");

        if (_function.visibility() != FunctionDefinition::Visibility::External)
            m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external.");

        if (_function.isConstructor())
            m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces.");
    }
    else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library)
        if (_function.isConstructor())
            m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries.");
    if (_function.isImplemented())
        _function.body().accept(*this);
    else if (_function.isConstructor())
        m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared.");
    else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal)
        m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared.");
    return false;
}

bool TypeChecker::visit(VariableDeclaration const& _variable)
{
    // Forbid any variable declarations inside interfaces unless they are part of
    // * a function's input/output parameters,
    // * or inside of a struct definition.
    if (
        m_scope->contractKind() == ContractDefinition::ContractKind::Interface
        && !_variable.isCallableParameter()
        && !m_insideStruct
    )
        m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces.");

    // type is filled either by ReferencesResolver directly from the type name or by
    // TypeChecker at the VariableDeclarationStatement level.
    TypePointer varType = _variable.annotation().type;
    solAssert(!!varType, "Variable type not provided.");

    if (_variable.value())
        expectType(*_variable.value(), *varType);
    if (_variable.isConstant())
    {
        if (!_variable.type()->isValueType())
        {
            bool allowed = false;
            if (auto arrayType = dynamic_cast<ArrayType const*>(_variable.type().get()))
                allowed = arrayType->isByteArray();
            if (!allowed)
                m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented.");
        }

        if (!_variable.value())
            m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable.");
        else if (!_variable.value()->annotation().isPure)
            m_errorReporter.typeError(
                _variable.value()->location(),
                "Initial value for constant variable has to be compile-time constant."
            );
    }
    if (!_variable.isStateVariable())
    {
        if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
            if (!varType->canLiveOutsideStorage())
                m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage.");
    }
    else if (_variable.visibility() >= VariableDeclaration::Visibility::Public)
    {
        FunctionType getter(_variable);
        if (!_variable.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2))
        {
            vector<string> unsupportedTypes;
            for (auto const& param: getter.parameterTypes() + getter.returnParameterTypes())
                if (!typeSupportedByOldABIEncoder(*param))
                    unsupportedTypes.emplace_back(param->toString());
            if (!unsupportedTypes.empty())
                m_errorReporter.typeError(_variable.location(),
                    "The following types are only supported for getters in the new experimental ABI encoder: " +
                    joinHumanReadable(unsupportedTypes) +
                    ". Either remove \"public\" or use \"pragma experimental ABIEncoderV2;\" to enable the feature."
                );
        }
        if (!getter.interfaceFunctionType())
            m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables.");
    }

    switch (varType->category())
    {
    case Type::Category::Array:
        if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
            if (
                ((arrayType->location() == DataLocation::Memory) ||
                (arrayType->location() == DataLocation::CallData)) &&
                !arrayType->validForCalldata()
            )
                m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded.");
        break;
    case Type::Category::Mapping:
        if (auto mappingType = dynamic_cast<MappingType const*>(varType.get()))
            if (
                mappingType->keyType()->isDynamicallySized() &&
                _variable.visibility() == Declaration::Visibility::Public
            )
                m_errorReporter.typeError(_variable.location(), "Dynamically-sized keys for public mappings are not supported.");
        break;
    default:
        break;
    }

    return false;
}

void TypeChecker::visitManually(
    ModifierInvocation const& _modifier,
    vector<ContractDefinition const*> const& _bases
)
{
    std::vector<ASTPointer<Expression>> const& arguments =
        _modifier.arguments() ? *_modifier.arguments() : std::vector<ASTPointer<Expression>>();
    for (ASTPointer<Expression> const& argument: arguments)
        argument->accept(*this);
    _modifier.name()->accept(*this);

    auto const* declaration = &dereference(*_modifier.name());
    vector<ASTPointer<VariableDeclaration>> emptyParameterList;
    vector<ASTPointer<VariableDeclaration>> const* parameters = nullptr;
    if (auto modifierDecl = dynamic_cast<ModifierDefinition const*>(declaration))
        parameters = &modifierDecl->parameters();
    else
        // check parameters for Base constructors
        for (ContractDefinition const* base: _bases)
            if (declaration == base)
            {
                if (auto referencedConstructor = base->constructor())
                    parameters = &referencedConstructor->parameters();
                else
                    parameters = &emptyParameterList;
                break;
            }
    if (!parameters)
    {
        m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class.");
        return;
    }
    if (parameters->size() != arguments.size())
    {
        m_errorReporter.typeError(
            _modifier.location(),
            "Wrong argument count for modifier invocation: " +
            toString(arguments.size()) +
            " arguments given but expected " +
            toString(parameters->size()) +
            "."
        );
        return;
    }
    for (size_t i = 0; i < arguments.size(); ++i)
        if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])))
            m_errorReporter.typeError(
                arguments[i]->location(),
                "Invalid type for argument in modifier invocation. "
                "Invalid implicit conversion from " +
                type(*arguments[i])->toString() +
                " to " +
                type(*(*parameters)[i])->toString() +
                " requested."
            );
}

bool TypeChecker::visit(EventDefinition const& _eventDef)
{
    solAssert(_eventDef.visibility() > Declaration::Visibility::Internal, "");
    unsigned numIndexed = 0;
    for (ASTPointer<VariableDeclaration> const& var: _eventDef.parameters())
    {
        if (var->isIndexed())
        {
            numIndexed++;
            if (
                _eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
                dynamic_cast<ReferenceType const*>(type(*var).get())
            )
                m_errorReporter.typeError(
                    var->location(),
                    "Indexed reference types cannot yet be used with ABIEncoderV2."
                );
        }
        if (!type(*var)->canLiveOutsideStorage())
            m_errorReporter.typeError(var->location(), "Type is required to live outside storage.");
        if (!type(*var)->interfaceType(false))
            m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type.");
        if (
            !_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) &&
            !typeSupportedByOldABIEncoder(*type(*var))
        )
            m_errorReporter.typeError(
                var->location(),
                "This type is only supported in the new experimental ABI encoder. "
                "Use \"pragma experimental ABIEncoderV2;\" to enable the feature."
            );
    }
    if (_eventDef.isAnonymous() && numIndexed > 4)
        m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event.");
    else if (!_eventDef.isAnonymous() && numIndexed > 3)
        m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event.");
    return false;
}

void TypeChecker::endVisit(FunctionTypeName const& _funType)
{
    FunctionType const& fun = dynamic_cast<FunctionType const&>(*_funType.annotation().type);
    if (fun.kind() == FunctionType::Kind::External)
        if (!fun.canBeUsedExternally(false))
            m_errorReporter.typeError(_funType.location(), "External function type uses internal types.");
}

bool TypeChecker::visit(InlineAssembly const& _inlineAssembly)
{
    // External references have already been resolved in a prior stage and stored in the annotation.
    // We run the resolve step again regardless.
    yul::ExternalIdentifierAccess::Resolver identifierAccess = [&](
        yul::Identifier const& _identifier,
        yul::IdentifierContext _context,
        bool
    )
    {
        auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier);
        if (ref == _inlineAssembly.annotation().externalReferences.end())
            return size_t(-1);
        Declaration const* declaration = ref->second.declaration;
        solAssert(!!declaration, "");
        bool requiresStorage = ref->second.isSlot || ref->second.isOffset;
        if (auto var = dynamic_cast<VariableDeclaration const*>(declaration))
        {
            if (var->isConstant())
            {
                m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly.");
                return size_t(-1);
            }
            else if (requiresStorage)
            {
                if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage))
                {
                    m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
                    return size_t(-1);
                }
                else if (_context != yul::IdentifierContext::RValue)
                {
                    m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to.");
                    return size_t(-1);
                }
            }
            else if (!var->isLocalVariable())
            {
                m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes.");
                return size_t(-1);
            }
            else if (var->type()->dataStoredIn(DataLocation::Storage))
            {
                m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables.");
                return size_t(-1);
            }
            else if (var->type()->sizeOnStack() != 1)
            {
                if (var->type()->dataStoredIn(DataLocation::CallData))
                    m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes.");
                else
                    m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported.");
                return size_t(-1);
            }
        }
        else if (requiresStorage)
        {
            m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables.");
            return size_t(-1);
        }
        else if (_context == yul::IdentifierContext::LValue)
        {
            m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly.");
            return size_t(-1);
        }

        if (_context == yul::IdentifierContext::RValue)
        {
            solAssert(!!declaration->type(), "Type of declaration required but not yet determined.");
            if (dynamic_cast<FunctionDefinition const*>(declaration))
            {
            }
            else if (dynamic_cast<VariableDeclaration const*>(declaration))
            {
            }
            else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
            {
                if (!contract->isLibrary())
                {
                    m_errorReporter.typeError(_identifier.location, "Expected a library.");
                    return size_t(-1);
                }
            }
            else
                return size_t(-1);
        }
        ref->second.valueSize = 1;
        return size_t(1);
    };
    solAssert(!_inlineAssembly.annotation().analysisInfo, "");
    _inlineAssembly.annotation().analysisInfo = make_shared<yul::AsmAnalysisInfo>();
    yul::AsmAnalyzer analyzer(
        *_inlineAssembly.annotation().analysisInfo,
        m_errorReporter,
        m_evmVersion,
        Error::Type::SyntaxError,
        yul::EVMDialect::looseAssemblyForEVM(),
        identifierAccess
    );
    if (!analyzer.analyze(_inlineAssembly.operations()))
        return false;
    return true;
}

bool TypeChecker::visit(IfStatement const& _ifStatement)
{
    expectType(_ifStatement.condition(), BoolType());
    _ifStatement.trueStatement().accept(*this);
    if (_ifStatement.falseStatement())
        _ifStatement.falseStatement()->accept(*this);
    return false;
}

bool TypeChecker::visit(WhileStatement const& _whileStatement)
{
    expectType(_whileStatement.condition(), BoolType());
    _whileStatement.body().accept(*this);
    return false;
}

bool TypeChecker::visit(ForStatement const& _forStatement)
{
    if (_forStatement.initializationExpression())
        _forStatement.initializationExpression()->accept(*this);
    if (_forStatement.condition())
        expectType(*_forStatement.condition(), BoolType());
    if (_forStatement.loopExpression())
        _forStatement.loopExpression()->accept(*this);
    _forStatement.body().accept(*this);
    return false;
}

void TypeChecker::endVisit(Return const& _return)
{
    ParameterList const* params = _return.annotation().functionReturnParameters;
    if (!_return.expression())
    {
        if (params && !params->parameters().empty())
            m_errorReporter.typeError(_return.location(), "Return arguments required.");
        return;
    }
    if (!params)
    {
        m_errorReporter.typeError(_return.location(), "Return arguments not allowed.");
        return;
    }
    TypePointers returnTypes;
    for (auto const& var: params->parameters())
        returnTypes.push_back(type(*var));
    if (auto tupleType = dynamic_cast<TupleType const*>(type(*_return.expression()).get()))
    {
        if (tupleType->components().size() != params->parameters().size())
            m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
        else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)))
            m_errorReporter.typeError(
                _return.expression()->location(),
                "Return argument type " +
                type(*_return.expression())->toString() +
                " is not implicitly convertible to expected type " +
                TupleType(returnTypes).toString(false) +
                "."
            );
    }
    else if (params->parameters().size() != 1)
        m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration.");
    else
    {
        TypePointer const& expected = type(*params->parameters().front());
        if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected))
            m_errorReporter.typeError(
                _return.expression()->location(),
                "Return argument type " +
                type(*_return.expression())->toString() +
                " is not implicitly convertible to expected type (type of first return variable) " +
                expected->toString() +
                "."
            );
    }
}

void TypeChecker::endVisit(EmitStatement const& _emit)
{
    if (
        _emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall ||
        type(_emit.eventCall().expression())->category() != Type::Category::Function ||
        dynamic_cast<FunctionType const&>(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event
    )
        m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation.");
    m_insideEmitStatement = false;
}

namespace
{
/**
 * @returns a suggested left-hand-side of a multi-variable declaration contairing
 * the variable declarations given in @a _decls.
 */
string createTupleDecl(vector<ASTPointer<VariableDeclaration>> const& _decls)
{
    vector<string> components;
    for (ASTPointer<VariableDeclaration> const& decl: _decls)
        if (decl)
        {
            solAssert(decl->annotation().type, "");
            components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name());
        }
        else
            components.emplace_back();

    if (_decls.size() == 1)
        return components.front();
    else
        return "(" + boost::algorithm::join(components, ", ") + ")";
}

bool typeCanBeExpressed(vector<ASTPointer<VariableDeclaration>> const& decls)
{
    for (ASTPointer<VariableDeclaration> const& decl: decls)
    {
        // skip empty tuples (they can be expressed of course)
        if (!decl)
            continue;

        if (!decl->annotation().type)
            return false;

        if (auto functionType = dynamic_cast<FunctionType const*>(decl->annotation().type.get()))
            if (
                functionType->kind() != FunctionType::Kind::Internal &&
                functionType->kind() != FunctionType::Kind::External
            )
                return false;
    }

    return true;
}
}

bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
{
    if (!_statement.initialValue())
    {
        // No initial value is only permitted for single variables with specified type.
        if (_statement.declarations().size() != 1 || !_statement.declarations().front())
        {
            if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr))
            {
                // The syntax checker has already generated an error for this case (empty LHS tuple).
                solAssert(m_errorReporter.hasErrors(), "");

                // It is okay to return here, as there are no named components on the
                // left-hand-side that could cause any damage later.
                return false;
            }
            else
                // Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then.
                m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");
        }

        VariableDeclaration const& varDecl = *_statement.declarations().front();
        if (!varDecl.annotation().type)
            m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed.");

        if (auto ref = dynamic_cast<ReferenceType const*>(type(varDecl).get()))
        {
            if (ref->dataStoredIn(DataLocation::Storage))
            {
                string errorText{"Uninitialized storage pointer."};
                if (varDecl.referenceLocation() == VariableDeclaration::Location::Unspecified)
                    errorText += " Did you mean '<type> memory " + varDecl.name() + "'?";
                solAssert(m_scope, "");
                m_errorReporter.declarationError(varDecl.location(), errorText);
            }
        }
        else if (dynamic_cast<MappingType const*>(type(varDecl).get()))
            m_errorReporter.typeError(
                varDecl.location(),
                "Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable."
            );
        varDecl.accept(*this);
        return false;
    }

    // Here we have an initial value and might have to derive some types before we can visit
    // the variable declaration(s).

    _statement.initialValue()->accept(*this);
    TypePointers valueTypes;
    if (auto tupleType = dynamic_cast<TupleType const*>(type(*_statement.initialValue()).get()))
        valueTypes = tupleType->components();
    else
        valueTypes = TypePointers{type(*_statement.initialValue())};

    vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
    if (variables.empty())
        // We already have an error for this in the SyntaxChecker.
        solAssert(m_errorReporter.hasErrors(), "");
    else if (valueTypes.size() != variables.size())
        m_errorReporter.typeError(
            _statement.location(),
            "Different number of components on the left hand side (" +
            toString(variables.size()) +
            ") than on the right hand side (" +
            toString(valueTypes.size()) +
            ")."
        );

    bool autoTypeDeductionNeeded = false;

    for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
    {
        if (!variables[i])
            continue;
        VariableDeclaration const& var = *variables[i];
        solAssert(!var.value(), "Value has to be tied to statement.");
        TypePointer const& valueComponentType = valueTypes[i];
        solAssert(!!valueComponentType, "");
        if (!var.annotation().type)
        {
            autoTypeDeductionNeeded = true;

            // Infer type from value.
            solAssert(!var.typeName(), "");
            var.annotation().type = valueComponentType->mobileType();
            if (!var.annotation().type)
            {
                if (valueComponentType->category() == Type::Category::RationalNumber)
                    m_errorReporter.fatalTypeError(
                        _statement.initialValue()->location(),
                        "Invalid rational " +
                        valueComponentType->toString() +
                        " (absolute value too large or division by zero)."
                    );
                else
                    solAssert(false, "");
            }
            else if (*var.annotation().type == TupleType())
                m_errorReporter.typeError(
                    var.location(),
                    "Cannot declare variable with void (empty tuple) type."
                );
            else if (valueComponentType->category() == Type::Category::RationalNumber)
            {
                string typeName = var.annotation().type->toString(true);
                string extension;
                if (auto type = dynamic_cast<IntegerType const*>(var.annotation().type.get()))
                {
                    unsigned numBits = type->numBits();
                    bool isSigned = type->isSigned();
                    solAssert(numBits > 0, "");
                    string minValue;
                    string maxValue;
                    if (isSigned)
                    {
                        numBits--;
                        minValue = "-" + bigint(bigint(1) << numBits).str();
                    }
                    else
                        minValue = "0";
                    maxValue = bigint((bigint(1) << numBits) - 1).str();
                    extension = ", which can hold values between " + minValue + " and " + maxValue;
                }
                else
                    solAssert(dynamic_cast<FixedPointType const*>(var.annotation().type.get()), "Unknown type.");
            }

            var.accept(*this);
        }
        else
        {
            var.accept(*this);
            if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
            {
                auto errorMsg = "Type " +
                    valueComponentType->toString() +
                    " is not implicitly convertible to expected type " +
                    var.annotation().type->toString();
                if (
                    valueComponentType->category() == Type::Category::RationalNumber &&
                    dynamic_cast<RationalNumberType const&>(*valueComponentType).isFractional() &&
                    valueComponentType->mobileType()
                )
                {
                    if (var.annotation().type->operator==(*valueComponentType->mobileType()))
                        m_errorReporter.typeError(
                            _statement.location(),
                            errorMsg + ", but it can be explicitly converted."
                        );
                    else
                        m_errorReporter.typeError(
                            _statement.location(),
                            errorMsg +
                            ". Try converting to type " +
                            valueComponentType->mobileType()->toString() +
                            " or use an explicit conversion."
                        );
                }
                else
                    m_errorReporter.typeError(_statement.location(), errorMsg + ".");
            }
        }
    }

    if (autoTypeDeductionNeeded)
    {
        if (!typeCanBeExpressed(variables))
            m_errorReporter.syntaxError(
                _statement.location(),
                "Use of the \"var\" keyword is disallowed. "
                "Type cannot be expressed in syntax."
            );
        else
            m_errorReporter.syntaxError(
                _statement.location(),
                "Use of the \"var\" keyword is disallowed. "
                "Use explicit declaration `" + createTupleDecl(variables) + " = ...´ instead."
            );
    }

    return false;
}

void TypeChecker::endVisit(ExpressionStatement const& _statement)
{
    if (type(_statement.expression())->category() == Type::Category::RationalNumber)
        if (!dynamic_cast<RationalNumberType const&>(*type(_statement.expression())).mobileType())
            m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number.");

    if (auto call = dynamic_cast<FunctionCall const*>(&_statement.expression()))
    {
        if (auto callType = dynamic_cast<FunctionType const*>(type(call->expression()).get()))
        {
            auto kind = callType->kind();
            if (
                kind == FunctionType::Kind::BareCall ||
                kind == FunctionType::Kind::BareCallCode ||
                kind == FunctionType::Kind::BareDelegateCall ||
                kind == FunctionType::Kind::BareStaticCall
            )
                m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used.");
            else if (kind == FunctionType::Kind::Send)
                m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead.");
        }
    }
}

bool TypeChecker::visit(Conditional const& _conditional)
{
    expectType(_conditional.condition(), BoolType());

    _conditional.trueExpression().accept(*this);
    _conditional.falseExpression().accept(*this);

    TypePointer trueType = type(_conditional.trueExpression())->mobileType();
    TypePointer falseType = type(_conditional.falseExpression())->mobileType();
    if (!trueType)
        m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type.");
    if (!falseType)
        m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type.");

    TypePointer commonType = Type::commonType(trueType, falseType);
    if (!commonType)
    {
        m_errorReporter.typeError(
                _conditional.location(),
                "True expression's type " +
                trueType->toString() +
                " doesn't match false expression's type " +
                falseType->toString() +
                "."
        );
        // even we can't find a common type, we have to set a type here,
        // otherwise the upper statement will not be able to check the type.
        commonType = trueType;
    }

    _conditional.annotation().type = commonType;
    _conditional.annotation().isPure =
        _conditional.condition().annotation().isPure &&
        _conditional.trueExpression().annotation().isPure &&
        _conditional.falseExpression().annotation().isPure;

    if (_conditional.annotation().lValueRequested)
        m_errorReporter.typeError(
                _conditional.location(),
                "Conditional expression as left value is not supported yet."
        );

    return false;
}

void TypeChecker::checkExpressionAssignment(Type const& _type, Expression const& _expression)
{
    if (auto const* tupleExpression = dynamic_cast<TupleExpression const*>(&_expression))
    {
        auto const* tupleType = dynamic_cast<TupleType const*>(&_type);
        auto const& types = tupleType ? tupleType->components() : vector<TypePointer> { _type.shared_from_this() };

        solAssert(
            tupleExpression->components().size() == types.size() || m_errorReporter.hasErrors(),
            "Array sizes don't match or no errors generated."
        );

        for (size_t i = 0; i < min(tupleExpression->components().size(), types.size()); i++)
            if (types[i])
            {
                solAssert(!!tupleExpression->components()[i], "");
                checkExpressionAssignment(*types[i], *tupleExpression->components()[i]);
            }
    }
    else if (_type.category() == Type::Category::Mapping)
    {
        bool isLocalOrReturn = false;
        if (auto const* identifier = dynamic_cast<Identifier const*>(&_expression))
            if (auto const *variableDeclaration = dynamic_cast<VariableDeclaration const*>(identifier->annotation().referencedDeclaration))
                if (variableDeclaration->isLocalOrReturn())
                    isLocalOrReturn = true;
        if (!isLocalOrReturn)
            m_errorReporter.typeError(_expression.location(), "Mappings cannot be assigned to.");
    }
}

bool TypeChecker::visit(Assignment const& _assignment)
{
    requireLValue(_assignment.leftHandSide());
    TypePointer t = type(_assignment.leftHandSide());
    _assignment.annotation().type = t;

    checkExpressionAssignment(*t, _assignment.leftHandSide());

    if (TupleType const* tupleType = dynamic_cast<TupleType const*>(t.get()))
    {
        if (_assignment.assignmentOperator() != Token::Assign)
            m_errorReporter.typeError(
                _assignment.location(),
                "Compound assignment is not allowed for tuple types."
            );
        // Sequenced assignments of tuples is not valid, make the result a "void" type.
        _assignment.annotation().type = make_shared<TupleType>();

        expectType(_assignment.rightHandSide(), *tupleType);

        // expectType does not cause fatal errors, so we have to check again here.
        if (dynamic_cast<TupleType const*>(type(_assignment.rightHandSide()).get()))
            checkDoubleStorageAssignment(_assignment);
    }
    else if (_assignment.assignmentOperator() == Token::Assign)
        expectType(_assignment.rightHandSide(), *t);
    else
    {
        // compound assignment
        _assignment.rightHandSide().accept(*this);
        TypePointer resultType = t->binaryOperatorResult(
            TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()),
            type(_assignment.rightHandSide())
        );
        if (!resultType || *resultType != *t)
            m_errorReporter.typeError(
                _assignment.location(),
                "Operator " +
                string(TokenTraits::toString(_assignment.assignmentOperator())) +
                " not compatible with types " +
                t->toString() +
                " and " +
                type(_assignment.rightHandSide())->toString()
            );
    }
    return false;
}

bool TypeChecker::visit(TupleExpression const& _tuple)
{
    vector<ASTPointer<Expression>> const& components = _tuple.components();
    TypePointers types;

    if (_tuple.annotation().lValueRequested)
    {
        if (_tuple.isInlineArray())
            m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue.");
        for (auto const& component: components)
            if (component)
            {
                requireLValue(*component);
                types.push_back(type(*component));
            }
            else
                types.push_back(TypePointer());
        if (components.size() == 1)
            _tuple.annotation().type = type(*components[0]);
        else
            _tuple.annotation().type = make_shared<TupleType>(types);
        // If some of the components are not LValues, the error is reported above.
        _tuple.annotation().isLValue = true;
    }
    else
    {
        bool isPure = true;
        TypePointer inlineArrayType;

        for (size_t i = 0; i < components.size(); ++i)
        {
            if (!components[i])
                m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty.");
            else if (components[i])
            {
                components[i]->accept(*this);
                types.push_back(type(*components[i]));

                if (types[i]->category() == Type::Category::Tuple)
                    if (dynamic_cast<TupleType const&>(*types[i]).components().empty())
                    {
                        if (_tuple.isInlineArray())
                            m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty.");
                        m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty.");
                    }

                // Note: code generation will visit each of the expression even if they are not assigned from.
                if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1)
                    if (!dynamic_cast<RationalNumberType const&>(*types[i]).mobileType())
                        m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number.");

                if (_tuple.isInlineArray())
                    solAssert(!!types[i], "Inline array cannot have empty components");
                if (_tuple.isInlineArray())
                {
                    if ((i == 0 || inlineArrayType) && !types[i]->mobileType())
                        m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type.");

                    if (i == 0)
                        inlineArrayType = types[i]->mobileType();
                    else if (inlineArrayType)
                        inlineArrayType = Type::commonType(inlineArrayType, types[i]);
                }
                if (!components[i]->annotation().isPure)
                    isPure = false;
            }
            else
                types.push_back(TypePointer());
        }
        _tuple.annotation().isPure = isPure;
        if (_tuple.isInlineArray())
        {
            if (!inlineArrayType)
                m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements.");
            else if (!inlineArrayType->canLiveOutsideStorage())
                m_errorReporter.fatalTypeError(_tuple.location(), "Type " + inlineArrayType->toString() + " is only valid in storage.");

            _tuple.annotation().type = make_shared<ArrayType>(DataLocation::Memory, inlineArrayType, types.size());
        }
        else
        {
            if (components.size() == 1)
                _tuple.annotation().type = type(*components[0]);
            else
                _tuple.annotation().type = make_shared<TupleType>(types);
        }

    }
    return false;
}

bool TypeChecker::visit(UnaryOperation const& _operation)
{
    // Inc, Dec, Add, Sub, Not, BitNot, Delete
    Token op = _operation.getOperator();
    bool const modifying = (op == Token::Inc || op == Token::Dec || op == Token::Delete);
    if (modifying)
        requireLValue(_operation.subExpression());
    else
        _operation.subExpression().accept(*this);
    TypePointer const& subExprType = type(_operation.subExpression());
    TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op);
    if (!t)
    {
        m_errorReporter.typeError(
            _operation.location(),
            "Unary operator " +
            string(TokenTraits::toString(op)) +
            " cannot be applied to type " +
            subExprType->toString()
        );
        t = subExprType;
    }
    _operation.annotation().type = t;
    _operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure;
    return false;
}

void TypeChecker::endVisit(BinaryOperation const& _operation)
{
    TypePointer const& leftType = type(_operation.leftExpression());
    TypePointer const& rightType = type(_operation.rightExpression());
    TypeResult result = leftType->binaryOperatorResult(_operation.getOperator(), rightType);
    TypePointer commonType = result.get();
    if (!commonType)
    {
        m_errorReporter.typeError(
            _operation.location(),
            "Operator " +
            string(TokenTraits::toString(_operation.getOperator())) +
            " not compatible with types " +
            leftType->toString() +
            " and " +
            rightType->toString() +
            (!result.message().empty() ? ". " + result.message() : "")
        );
        commonType = leftType;
    }
    _operation.annotation().commonType = commonType;
    _operation.annotation().type =
        TokenTraits::isCompareOp(_operation.getOperator()) ?
        make_shared<BoolType>() :
        commonType;
    _operation.annotation().isPure =
        _operation.leftExpression().annotation().isPure &&
        _operation.rightExpression().annotation().isPure;

    if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL)
    {
        string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift";
        if (
            leftType->category() == Type::Category::RationalNumber &&
            rightType->category() != Type::Category::RationalNumber
        )
            if ((
                commonType->category() == Type::Category::Integer &&
                dynamic_cast<IntegerType const&>(*commonType).numBits() != 256
            ) || (
                commonType->category() == Type::Category::FixedPoint &&
                dynamic_cast<FixedPointType const&>(*commonType).numBits() != 256
            ))
                m_errorReporter.warning(
                    _operation.location(),
                    "Result of " + operation + " has type " + commonType->toString() + " and thus "
                    "might overflow. Silence this warning by converting the literal to the "
                    "expected type."
                );
    }
}

TypePointer TypeChecker::typeCheckTypeConversionAndRetrieveReturnType(
    FunctionCall const& _functionCall
)
{
    solAssert(_functionCall.annotation().kind == FunctionCallKind::TypeConversion, "");
    TypePointer const& expressionType = type(_functionCall.expression());

    vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
    bool const isPositionalCall = _functionCall.names().empty();

    TypePointer resultType = dynamic_cast<TypeType const&>(*expressionType).actualType();
    if (arguments.size() != 1)
        m_errorReporter.typeError(
            _functionCall.location(),
            "Exactly one argument expected for explicit type conversion."
        );
    else if (!isPositionalCall)
        m_errorReporter.typeError(
            _functionCall.location(),
            "Type conversion cannot allow named arguments."
        );
    else
    {
        TypePointer const& argType = type(*arguments.front());
        // Resulting data location is memory unless we are converting from a reference
        // type with a different data location.
        // (data location cannot yet be specified for type conversions)
        DataLocation dataLoc = DataLocation::Memory;
        if (auto argRefType = dynamic_cast<ReferenceType const*>(argType.get()))
            dataLoc = argRefType->location();
        if (auto type = dynamic_cast<ReferenceType const*>(resultType.get()))
            resultType = type->copyForLocation(dataLoc, type->isPointer());
        if (argType->isExplicitlyConvertibleTo(*resultType))
        {
            if (auto argArrayType = dynamic_cast<ArrayType const*>(argType.get()))
            {
                auto resultArrayType = dynamic_cast<ArrayType const*>(resultType.get());
                solAssert(!!resultArrayType, "");
                solAssert(
                    argArrayType->location() != DataLocation::Storage ||
                    (
                        (
                            resultArrayType->isPointer() ||
                            (argArrayType->isByteArray() && resultArrayType->isByteArray())
                        ) &&
                        resultArrayType->location() == DataLocation::Storage
                    ),
                    "Invalid explicit conversion to storage type."
                );
            }
        }
        else
        {
            if (
                resultType->category() == Type::Category::Contract &&
                argType->category() == Type::Category::Address
            )
            {
                solAssert(dynamic_cast<ContractType const*>(resultType.get())->isPayable(), "");
                solAssert(
                    dynamic_cast<AddressType const*>(argType.get())->stateMutability() <
                        StateMutability::Payable,
                    ""
                );
                SecondarySourceLocation ssl;
                if (
                    auto const* identifier = dynamic_cast<Identifier const*>(arguments.front().get())
                )
                    if (
                        auto const* variableDeclaration = dynamic_cast<VariableDeclaration const*>(
                            identifier->annotation().referencedDeclaration
                        )
                    )
                        ssl.append(
                            "Did you mean to declare this variable as \"address payable\"?",
                            variableDeclaration->location()
                        );
                m_errorReporter.typeError(
                    _functionCall.location(), ssl,
                    "Explicit type conversion not allowed from non-payable \"address\" to \"" +
                    resultType->toString() +
                    "\", which has a payable fallback function."
                );
            }
            else
                m_errorReporter.typeError(
                    _functionCall.location(),
                    "Explicit type conversion not allowed from \"" +
                    argType->toString() +
                    "\" to \"" +
                    resultType->toString() +
                    "\"."
                );
        }
        if (resultType->category() == Type::Category::Address)
        {
            bool const payable = argType->isExplicitlyConvertibleTo(AddressType::addressPayable());
            resultType = make_shared<AddressType>(
                payable ? StateMutability::Payable : StateMutability::NonPayable
            );
        }
    }
    return resultType;
}

void TypeChecker::typeCheckFunctionCall(
    FunctionCall const& _functionCall,
    FunctionTypePointer _functionType
)
{
    // Actual function call or struct constructor call.

    solAssert(!!_functionType, "");
    solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, "");

    // Check for unsupported use of bare static call
    if (
        _functionType->kind() == FunctionType::Kind::BareStaticCall &&
        !m_evmVersion.hasStaticCall()
    )
        m_errorReporter.typeError(
            _functionCall.location(),
            "\"staticcall\" is not supported by the VM version."
        );

    // Check for event outside of emit statement
    if (!m_insideEmitStatement && _functionType->kind() == FunctionType::Kind::Event)
        m_errorReporter.typeError(
            _functionCall.location(),
            "Event invocations have to be prefixed by \"emit\"."
        );

    // Perform standard function call type checking
    typeCheckFunctionGeneralChecks(_functionCall, _functionType);
}

void TypeChecker::typeCheckABIEncodeFunctions(
    FunctionCall const& _functionCall,
    FunctionTypePointer _functionType
)
{
    solAssert(!!_functionType, "");
    solAssert(
        _functionType->kind() == FunctionType::Kind::ABIEncode ||
        _functionType->kind() == FunctionType::Kind::ABIEncodePacked ||
        _functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector ||
        _functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature,
        "ABI function has unexpected FunctionType::Kind."
    );
    solAssert(_functionType->takesArbitraryParameters(), "ABI functions should be variadic.");

    bool const isPacked = _functionType->kind() == FunctionType::Kind::ABIEncodePacked;
    solAssert(_functionType->padArguments() != isPacked, "ABI function with unexpected padding");

    bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(
        ExperimentalFeature::ABIEncoderV2
    );

    // Check for named arguments
    if (!_functionCall.names().empty())
    {
        m_errorReporter.typeError(
            _functionCall.location(),
            "Named arguments cannot be used for functions that take arbitrary parameters."
        );
        return;
    }

    // Perform standard function call type checking
    typeCheckFunctionGeneralChecks(_functionCall, _functionType);

    // Check additional arguments for variadic functions
    vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
    for (size_t i = 0; i < arguments.size(); ++i)
    {
        auto const& argType = type(*arguments[i]);

        if (argType->category() == Type::Category::RationalNumber)
        {
            if (!argType->mobileType())
            {
                m_errorReporter.typeError(
                    arguments[i]->location(),
                    "Invalid rational number (too large or division by zero)."
                );
                continue;
            }
            else if (isPacked)
            {
                m_errorReporter.typeError(
                    arguments[i]->location(),
                    "Cannot perform packed encoding for a literal."
                    " Please convert it to an explicit type first."
                );
                continue;
            }
        }

        if (!argType->fullEncodingType(false, abiEncoderV2, !_functionType->padArguments()))
            m_errorReporter.typeError(
                arguments[i]->location(),
                "This type cannot be encoded."
            );
    }
}

void TypeChecker::typeCheckFunctionGeneralChecks(
    FunctionCall const& _functionCall,
    FunctionTypePointer _functionType
)
{
    // Actual function call or struct constructor call.

    solAssert(!!_functionType, "");
    solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, "");

    bool const isPositionalCall = _functionCall.names().empty();
    bool const isVariadic = _functionType->takesArbitraryParameters();

    solAssert(
        !isVariadic || _functionCall.annotation().kind == FunctionCallKind::FunctionCall,
        "Struct constructor calls cannot be variadic."
    );

    TypePointers const& parameterTypes = _functionType->parameterTypes();
    vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
    vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.names();

    // Check number of passed in arguments
    if (
        arguments.size() < parameterTypes.size() ||
        (!isVariadic && arguments.size() > parameterTypes.size())
    )
    {
        bool const isStructConstructorCall =
            _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall;

        string msg;

        if (isVariadic)
            msg +=
                "Need at least " +
                toString(parameterTypes.size()) +
                " arguments for " +
                string(isStructConstructorCall ? "struct constructor" : "function call") +
                ", but provided only " +
                toString(arguments.size()) +
                ".";
        else
            msg +=
                "Wrong argument count for " +
                string(isStructConstructorCall ? "struct constructor" : "function call") +
                ": " +
                toString(arguments.size()) +
                " arguments given but " +
                string(isVariadic ? "need at least " : "expected ") +
                toString(parameterTypes.size()) +
                ".";

        // Extend error message in case we try to construct a struct with mapping member.
        if (isStructConstructorCall)
        {
            /// For error message: Struct members that were removed during conversion to memory.
            TypePointer const expressionType = type(_functionCall.expression());
            TypeType const& t = dynamic_cast<TypeType const&>(*expressionType);
            auto const& structType = dynamic_cast<StructType const&>(*t.actualType());
            set<string> membersRemovedForStructConstructor = structType.membersMissingInMemory();

            if (!membersRemovedForStructConstructor.empty())
            {
                msg += " Members that have to be skipped in memory:";
                for (auto const& member: membersRemovedForStructConstructor)
                    msg += " " + member;
            }
        }
        else if (
            _functionType->kind() == FunctionType::Kind::BareCall ||
            _functionType->kind() == FunctionType::Kind::BareCallCode ||
            _functionType->kind() == FunctionType::Kind::BareDelegateCall ||
            _functionType->kind() == FunctionType::Kind::BareStaticCall
        )
        {
            if (arguments.empty())
                msg +=
                    " This function requires a single bytes argument."
                    " Use \"\" as argument to provide empty calldata.";
            else
                msg +=
                    " This function requires a single bytes argument."
                    " If all your arguments are value types, you can use"
                    " abi.encode(...) to properly generate it.";
        }
        else if (
            _functionType->kind() == FunctionType::Kind::KECCAK256 ||
            _functionType->kind() == FunctionType::Kind::SHA256 ||
            _functionType->kind() == FunctionType::Kind::RIPEMD160
        )
            msg +=
                " This function requires a single bytes argument."
                " Use abi.encodePacked(...) to obtain the pre-0.5.0"
                " behaviour or abi.encode(...) to use ABI encoding.";
        m_errorReporter.typeError(_functionCall.location(), msg);
        return;
    }

    // Parameter to argument map
    std::vector<Expression const*> paramArgMap(parameterTypes.size());

    // Map parameters to arguments - trivially for positional calls, less so for named calls
    if (isPositionalCall)
        for (size_t i = 0; i < paramArgMap.size(); ++i)
            paramArgMap[i] = arguments[i].get();
    else
    {
        auto const& parameterNames = _functionType->parameterNames();

        // Check for expected number of named arguments
        if (parameterNames.size() != argumentNames.size())
        {
            m_errorReporter.typeError(
                _functionCall.location(),
                parameterNames.size() > argumentNames.size() ?
                "Some argument names are missing." :
                "Too many arguments."
            );
            return;
        }

        // Check for duplicate argument names
        {
            bool duplication = false;
            for (size_t i = 0; i < argumentNames.size(); i++)
                for (size_t j = i + 1; j < argumentNames.size(); j++)
                    if (*argumentNames[i] == *argumentNames[j])
                    {
                        duplication = true;
                        m_errorReporter.typeError(
                            arguments[i]->location(),
                            "Duplicate named argument \"" + *argumentNames[i] + "\"."
                        );
                    }
            if (duplication)
                return;
        }

        // map parameter names to argument names
        {
            bool not_all_mapped = false;

            for (size_t i = 0; i < paramArgMap.size(); i++)
            {
                size_t j;
                for (j = 0; j < argumentNames.size(); j++)
                    if (parameterNames[i] == *argumentNames[j])
                        break;

                if (j < argumentNames.size())
                    paramArgMap[i] = arguments[j].get();
                else
                {
                    paramArgMap[i] = nullptr;
                    not_all_mapped = true;
                    m_errorReporter.typeError(
                        _functionCall.location(),
                        "Named argument \"" +
                        *argumentNames[i] +
                        "\" does not match function declaration."
                    );
                }
            }

            if (not_all_mapped)
                return;
        }
    }

    // Check for compatible types between arguments and parameters
    for (size_t i = 0; i < paramArgMap.size(); ++i)
    {
        solAssert(!!paramArgMap[i], "unmapped parameter");
        if (!type(*paramArgMap[i])->isImplicitlyConvertibleTo(*parameterTypes[i]))
        {
            string msg =
                "Invalid type for argument in function call. "
                "Invalid implicit conversion from " +
                type(*paramArgMap[i])->toString() +
                " to " +
                parameterTypes[i]->toString() +
                " requested.";
            if (
                _functionType->kind() == FunctionType::Kind::BareCall ||
                _functionType->kind() == FunctionType::Kind::BareCallCode ||
                _functionType->kind() == FunctionType::Kind::BareDelegateCall ||
                _functionType->kind() == FunctionType::Kind::BareStaticCall
            )
                msg +=
                    " This function requires a single bytes argument."
                    " If all your arguments are value types, you can"
                    " use abi.encode(...) to properly generate it.";
            else if (
                _functionType->kind() == FunctionType::Kind::KECCAK256 ||
                _functionType->kind() == FunctionType::Kind::SHA256 ||
                _functionType->kind() == FunctionType::Kind::RIPEMD160
            )
                msg +=
                    " This function requires a single bytes argument."
                    " Use abi.encodePacked(...) to obtain the pre-0.5.0"
                    " behaviour or abi.encode(...) to use ABI encoding.";
            m_errorReporter.typeError(paramArgMap[i]->location(), msg);
        }
    }
}

bool TypeChecker::visit(FunctionCall const& _functionCall)
{
    vector<ASTPointer<Expression const>> const& arguments = _functionCall.arguments();
    bool argumentsArePure = true;

    // We need to check arguments' type first as they will be needed for overload resolution.
    for (ASTPointer<Expression const> const& argument: arguments)
    {
        argument->accept(*this);
        if (!argument->annotation().isPure)
            argumentsArePure = false;
    }

    // For positional calls only, store argument types
    if (_functionCall.names().empty())
    {
        shared_ptr<TypePointers> argumentTypes = make_shared<TypePointers>();
        for (ASTPointer<Expression const> const& argument: arguments)
            argumentTypes->push_back(type(*argument));
        _functionCall.expression().annotation().argumentTypes = move(argumentTypes);
    }

    _functionCall.expression().accept(*this);

    TypePointer const& expressionType = type(_functionCall.expression());

    // Determine function call kind and function type for this FunctionCall node
    FunctionCallAnnotation& funcCallAnno = _functionCall.annotation();
    FunctionTypePointer functionType;

    // Determine and assign function call kind, purity and function type for this FunctionCall node
    switch (expressionType->category())
    {
    case Type::Category::Function:
        functionType = dynamic_pointer_cast<FunctionType const>(expressionType);
        funcCallAnno.kind = FunctionCallKind::FunctionCall;

        // Purity for function calls also depends upon the callee and its FunctionType
        funcCallAnno.isPure =
            argumentsArePure &&
            _functionCall.expression().annotation().isPure &&
            functionType &&
            functionType->isPure();

        break;

    case Type::Category::TypeType:
    {
        // Determine type for type conversion or struct construction expressions
        TypePointer const& actualType = dynamic_cast<TypeType const&>(*expressionType).actualType();
        solAssert(!!actualType, "");

        if (actualType->category() == Type::Category::Struct)
        {
            functionType = dynamic_cast<StructType const&>(*actualType).constructorType();
            funcCallAnno.kind = FunctionCallKind::StructConstructorCall;
            funcCallAnno.isPure = argumentsArePure;
        }
        else
        {
            funcCallAnno.kind = FunctionCallKind::TypeConversion;
            funcCallAnno.isPure = argumentsArePure;
        }

        break;
    }

    default:
        m_errorReporter.typeError(_functionCall.location(), "Type is not callable");
        funcCallAnno.kind = FunctionCallKind::Unset;
        funcCallAnno.isPure = argumentsArePure;
        break;
    }

    // Determine return types
    switch (funcCallAnno.kind)
    {
    case FunctionCallKind::TypeConversion:
        funcCallAnno.type = typeCheckTypeConversionAndRetrieveReturnType(_functionCall);
        break;

    case FunctionCallKind::StructConstructorCall: // fall-through
    case FunctionCallKind::FunctionCall:
    {
        TypePointers returnTypes;

        switch (functionType->kind())
        {
        case FunctionType::Kind::ABIDecode:
        {
            bool const abiEncoderV2 =
                m_scope->sourceUnit().annotation().experimentalFeatures.count(
                    ExperimentalFeature::ABIEncoderV2
                );
            returnTypes = typeCheckABIDecodeAndRetrieveReturnType(_functionCall, abiEncoderV2);
            break;
        }
        case FunctionType::Kind::ABIEncode:
        case FunctionType::Kind::ABIEncodePacked:
        case FunctionType::Kind::ABIEncodeWithSelector:
        case FunctionType::Kind::ABIEncodeWithSignature:
        {
            typeCheckABIEncodeFunctions(_functionCall, functionType);
            returnTypes = functionType->returnParameterTypes();
            break;
        }
        default:
        {
            typeCheckFunctionCall(_functionCall, functionType);
            returnTypes = m_evmVersion.supportsReturndata() ?
                functionType->returnParameterTypes() :
                functionType->returnParameterTypesWithoutDynamicTypes();
            break;
        }
        }

        funcCallAnno.type = returnTypes.size() == 1 ?
            move(returnTypes.front()) :
            make_shared<TupleType>(move(returnTypes));

        break;
    }

    case FunctionCallKind::Unset: // fall-through
    default:
        // for non-callables, ensure error reported and annotate node to void function
        solAssert(m_errorReporter.hasErrors(), "");
        funcCallAnno.kind = FunctionCallKind::FunctionCall;
        funcCallAnno.type = make_shared<TupleType>();
        break;
    }

    return false;
}

void TypeChecker::endVisit(NewExpression const& _newExpression)
{
    TypePointer type = _newExpression.typeName().annotation().type;
    solAssert(!!type, "Type name not resolved.");

    if (auto contractName = dynamic_cast<UserDefinedTypeName const*>(&_newExpression.typeName()))
    {
        auto contract = dynamic_cast<ContractDefinition const*>(&dereference(*contractName));

        if (!contract)
            m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract.");
        if (contract->contractKind() == ContractDefinition::ContractKind::Interface)
            m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface.");
        if (!contract->annotation().unimplementedFunctions.empty())
        {
            SecondarySourceLocation ssl;
            for (auto function: contract->annotation().unimplementedFunctions)
                ssl.append("Missing implementation:", function->location());
            string msg = "Trying to create an instance of an abstract contract.";
            ssl.limitSize(msg);
            m_errorReporter.typeError(
                _newExpression.location(),
                ssl,
                msg
            );
        }
        if (!contract->constructorIsPublic())
            m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly.");

        solAssert(!!m_scope, "");
        m_scope->annotation().contractDependencies.insert(contract);
        solAssert(
            !contract->annotation().linearizedBaseContracts.empty(),
            "Linearized base contracts not yet available."
        );
        if (contractDependenciesAreCyclic(*m_scope))
            m_errorReporter.typeError(
                _newExpression.location(),
                "Circular reference for contract creation (cannot create instance of derived or same contract)."
            );

        _newExpression.annotation().type = FunctionType::newExpressionType(*contract);
    }
    else if (type->category() == Type::Category::Array)
    {
        if (!type->canLiveOutsideStorage())
            m_errorReporter.fatalTypeError(
                _newExpression.typeName().location(),
                "Type cannot live outside storage."
            );
        if (!type->isDynamicallySized())
            m_errorReporter.typeError(
                _newExpression.typeName().location(),
                "Length has to be placed in parentheses after the array type for new expression."
            );
        type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type);
        _newExpression.annotation().type = make_shared<FunctionType>(
            TypePointers{make_shared<IntegerType>(256)},
            TypePointers{type},
            strings(),
            strings(),
            FunctionType::Kind::ObjectCreation,
            false,
            StateMutability::Pure
        );
        _newExpression.annotation().isPure = true;
    }
    else
        m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected.");
}

bool TypeChecker::visit(MemberAccess const& _memberAccess)
{
    _memberAccess.expression().accept(*this);
    TypePointer exprType = type(_memberAccess.expression());
    ASTString const& memberName = _memberAccess.memberName();

    // Retrieve the types of the arguments if this is used to call a function.
    auto const& argumentTypes = _memberAccess.annotation().argumentTypes;
    MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName);
    size_t const initialMemberCount = possibleMembers.size();
    if (initialMemberCount > 1 && argumentTypes)
    {
        // do overload resolution
        for (auto it = possibleMembers.begin(); it != possibleMembers.end();)
            if (
                it->type->category() == Type::Category::Function &&
                !dynamic_cast<FunctionType const&>(*it->type).canTakeArguments(*argumentTypes, exprType)
            )
                it = possibleMembers.erase(it);
            else
                ++it;
    }

    auto& annotation = _memberAccess.annotation();

    if (possibleMembers.empty())
    {
        if (initialMemberCount == 0)
        {
            // Try to see if the member was removed because it is only available for storage types.
            auto storageType = ReferenceType::copyForLocationIfReference(
                DataLocation::Storage,
                exprType
            );
            if (!storageType->members(m_scope).membersByName(memberName).empty())
                m_errorReporter.fatalTypeError(
                    _memberAccess.location(),
                    "Member \"" + memberName + "\" is not available in " +
                    exprType->toString() +
                    " outside of storage."
                );
        }
        string errorMsg = "Member \"" + memberName + "\" not found or not visible "
                "after argument-dependent lookup in " + exprType->toString() + ".";
        if (memberName == "value")
        {
            errorMsg.pop_back();
            errorMsg += " - did you forget the \"payable\" modifier?";
        }
        else if (exprType->category() == Type::Category::Function)
        {
            if (auto const& funType = dynamic_pointer_cast<FunctionType const>(exprType))
            {
                auto const& t = funType->returnParameterTypes();
                if (t.size() == 1)
                    if (
                        t.front()->category() == Type::Category::Contract ||
                        t.front()->category() == Type::Category::Struct
                    )
                        errorMsg += " Did you intend to call the function?";
            }
        }
        if (exprType->category() == Type::Category::Contract)
            for (auto const& addressMember: AddressType::addressPayable().nativeMembers(nullptr))
                if (addressMember.name == memberName)
                {
                    Identifier const* var = dynamic_cast<Identifier const*>(&_memberAccess.expression());
                    string varName = var ? var->name() : "...";
                    errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member.";
                    break;
                }
        m_errorReporter.fatalTypeError(
            _memberAccess.location(),
            errorMsg
        );
    }
    else if (possibleMembers.size() > 1)
        m_errorReporter.fatalTypeError(
            _memberAccess.location(),
            "Member \"" + memberName + "\" not unique "
            "after argument-dependent lookup in " + exprType->toString() +
            (memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".")
        );

    annotation.referencedDeclaration = possibleMembers.front().declaration;
    annotation.type = possibleMembers.front().type;

    if (auto funType = dynamic_cast<FunctionType const*>(annotation.type.get()))
        if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType()))
            m_errorReporter.typeError(
                _memberAccess.location(),
                "Function \"" + memberName + "\" cannot be called on an object of type " +
                exprType->toString() + " (expected " + funType->selfType()->toString() + ")."
            );

    if (exprType->category() == Type::Category::Struct)
        annotation.isLValue = true;
    else if (exprType->category() == Type::Category::Array)
    {
        auto const& arrayType(dynamic_cast<ArrayType const&>(*exprType));
        annotation.isLValue = (
            memberName == "length" &&
            arrayType.location() == DataLocation::Storage &&
            arrayType.isDynamicallySized()
        );
    }
    else if (exprType->category() == Type::Category::FixedBytes)
        annotation.isLValue = false;
    else if (TypeType const* typeType = dynamic_cast<decltype(typeType)>(exprType.get()))
    {
        if (ContractType const* contractType = dynamic_cast<decltype(contractType)>(typeType->actualType().get()))
            annotation.isLValue = annotation.referencedDeclaration->isLValue();
    }

    if (exprType->category() == Type::Category::Contract)
    {
        // Warn about using send or transfer with a non-payable fallback function.
        if (auto callType = dynamic_cast<FunctionType const*>(type(_memberAccess).get()))
        {
            auto kind = callType->kind();
            auto contractType = dynamic_cast<ContractType const*>(exprType.get());
            solAssert(!!contractType, "Should be contract type.");

            if (
                (kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) &&
                !contractType->isPayable()
            )
                m_errorReporter.typeError(
                    _memberAccess.location(),
                    "Value transfer to a contract without a payable fallback function."
                );
        }
    }

    // TODO some members might be pure, but for example `address(0x123).balance` is not pure
    // although every subexpression is, so leaving this limited for now.
    if (auto tt = dynamic_cast<TypeType const*>(exprType.get()))
        if (tt->actualType()->category() == Type::Category::Enum)
            annotation.isPure = true;
    if (auto magicType = dynamic_cast<MagicType const*>(exprType.get()))
        if (magicType->kind() == MagicType::Kind::ABI)
            annotation.isPure = true;

    return false;
}

bool TypeChecker::visit(IndexAccess const& _access)
{
    _access.baseExpression().accept(*this);
    TypePointer baseType = type(_access.baseExpression());
    TypePointer resultType;
    bool isLValue = false;
    bool isPure = _access.baseExpression().annotation().isPure;
    Expression const* index = _access.indexExpression();
    switch (baseType->category())
    {
    case Type::Category::Array:
    {
        ArrayType const& actualType = dynamic_cast<ArrayType const&>(*baseType);
        if (!index)
            m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
        else if (actualType.isString())
        {
            m_errorReporter.typeError(_access.location(), "Index access for string is not possible.");
            index->accept(*this);
        }
        else
        {
            expectType(*index, IntegerType::uint256());
            if (!m_errorReporter.hasErrors())
                if (auto numberType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
                {
                    solAssert(!numberType->isFractional(), "");
                    if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr))
                        m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
                }
        }
        resultType = actualType.baseType();
        isLValue = actualType.location() != DataLocation::CallData;
        break;
    }
    case Type::Category::Mapping:
    {
        MappingType const& actualType = dynamic_cast<MappingType const&>(*baseType);
        if (!index)
            m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
        else
            expectType(*index, *actualType.keyType());
        resultType = actualType.valueType();
        isLValue = true;
        break;
    }
    case Type::Category::TypeType:
    {
        TypeType const& typeType = dynamic_cast<TypeType const&>(*baseType);
        if (!index)
            resultType = make_shared<TypeType>(make_shared<ArrayType>(DataLocation::Memory, typeType.actualType()));
        else
        {
            expectType(*index, IntegerType::uint256());
            if (auto length = dynamic_cast<RationalNumberType const*>(type(*index).get()))
                resultType = make_shared<TypeType>(make_shared<ArrayType>(
                    DataLocation::Memory,
                    typeType.actualType(),
                    length->literalValue(nullptr)
                ));
            else
                m_errorReporter.fatalTypeError(index->location(), "Integer constant expected.");
        }
        break;
    }
    case Type::Category::FixedBytes:
    {
        FixedBytesType const& bytesType = dynamic_cast<FixedBytesType const&>(*baseType);
        if (!index)
            m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted.");
        else
        {
            if (!expectType(*index, IntegerType::uint256()))
                m_errorReporter.fatalTypeError(_access.location(), "Index expression cannot be represented as an unsigned integer.");
            if (auto integerType = dynamic_cast<RationalNumberType const*>(type(*index).get()))
                if (bytesType.numBytes() <= integerType->literalValue(nullptr))
                    m_errorReporter.typeError(_access.location(), "Out of bounds array access.");
        }
        resultType = make_shared<FixedBytesType>(1);
        isLValue = false; // @todo this heavily depends on how it is embedded
        break;
    }
    default:
        m_errorReporter.fatalTypeError(
            _access.baseExpression().location(),
            "Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")"
        );
    }
    _access.annotation().type = move(resultType);
    _access.annotation().isLValue = isLValue;
    if (index && !index->annotation().isPure)
        isPure = false;
    _access.annotation().isPure = isPure;

    return false;
}

bool TypeChecker::visit(Identifier const& _identifier)
{
    IdentifierAnnotation& annotation = _identifier.annotation();
    if (!annotation.referencedDeclaration)
    {
        if (!annotation.argumentTypes)
        {
            // The identifier should be a public state variable shadowing other functions
            vector<Declaration const*> candidates;

            for (Declaration const* declaration: annotation.overloadedDeclarations)
            {
                if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
                    candidates.push_back(declaration);
            }
            if (candidates.empty())
                m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
            else if (candidates.size() == 1)
                annotation.referencedDeclaration = candidates.front();
            else
                m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
        }
        else if (annotation.overloadedDeclarations.empty())
            m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
        else if (annotation.overloadedDeclarations.size() == 1)
            annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
        else
        {
            vector<Declaration const*> candidates;

            for (Declaration const* declaration: annotation.overloadedDeclarations)
            {
                FunctionTypePointer functionType = declaration->functionType(true);
                solAssert(!!functionType, "Requested type not present.");
                if (functionType->canTakeArguments(*annotation.argumentTypes))
                    candidates.push_back(declaration);
            }
            if (candidates.empty())
                m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup.");
            else if (candidates.size() == 1)
                annotation.referencedDeclaration = candidates.front();
            else
                m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup.");
        }
    }
    solAssert(
        !!annotation.referencedDeclaration,
        "Referenced declaration is null after overload resolution."
    );
    annotation.isLValue = annotation.referencedDeclaration->isLValue();
    annotation.type = annotation.referencedDeclaration->type();
    if (!annotation.type)
        m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined.");
    if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(annotation.referencedDeclaration))
        annotation.isPure = annotation.isConstant = variableDeclaration->isConstant();
    else if (dynamic_cast<MagicVariableDeclaration const*>(annotation.referencedDeclaration))
        if (dynamic_cast<FunctionType const*>(annotation.type.get()))
            annotation.isPure = true;

    // Check for deprecated function names.
    // The check is done here for the case without an actual function call.
    if (FunctionType const* fType = dynamic_cast<FunctionType const*>(_identifier.annotation().type.get()))
    {
        if (_identifier.name() == "sha3" && fType->kind() == FunctionType::Kind::KECCAK256)
            m_errorReporter.typeError(
                _identifier.location(),
                "\"sha3\" has been deprecated in favour of \"keccak256\""
            );
        else if (_identifier.name() == "suicide" && fType->kind() == FunctionType::Kind::Selfdestruct)
            m_errorReporter.typeError(
                _identifier.location(),
                "\"suicide\" has been deprecated in favour of \"selfdestruct\""
            );
    }

    return false;
}

void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr)
{
    _expr.annotation().type = make_shared<TypeType>(Type::fromElementaryTypeName(_expr.typeName()));
    _expr.annotation().isPure = true;
}

void TypeChecker::endVisit(Literal const& _literal)
{
    if (_literal.looksLikeAddress())
    {
        // Assign type here if it even looks like an address. This prevents double errors for invalid addresses
        _literal.annotation().type = make_shared<AddressType>(StateMutability::Payable);

        string msg;
        if (_literal.valueWithoutUnderscores().length() != 42) // "0x" + 40 hex digits
            // looksLikeAddress enforces that it is a hex literal starting with "0x"
            msg =
                "This looks like an address but is not exactly 40 hex digits. It is " +
                to_string(_literal.valueWithoutUnderscores().length() - 2) +
                " hex digits.";
        else if (!_literal.passesAddressChecksum())
        {
            msg = "This looks like an address but has an invalid checksum.";
            if (!_literal.getChecksummedAddress().empty())
                msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\".";
        }

        if (!msg.empty())
            m_errorReporter.syntaxError(
                _literal.location(),
                msg +
                " If this is not used as an address, please prepend '00'. " +
                "For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals"
            );
    }

    if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None)
        m_errorReporter.fatalTypeError(
            _literal.location(),
            "Hexadecimal numbers cannot be used with unit denominations. "
            "You can use an expression of the form \"0x1234 * 1 day\" instead."
        );

    if (_literal.subDenomination() == Literal::SubDenomination::Year)
        m_errorReporter.typeError(
            _literal.location(),
            "Using \"years\" as a unit denomination is deprecated."
        );

    if (!_literal.annotation().type)
        _literal.annotation().type = Type::forLiteral(_literal);

    if (!_literal.annotation().type)
        m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value.");

    _literal.annotation().isPure = true;
}

bool TypeChecker::contractDependenciesAreCyclic(
    ContractDefinition const& _contract,
    std::set<ContractDefinition const*> const& _seenContracts
) const
{
    // Naive depth-first search that remembers nodes already seen.
    if (_seenContracts.count(&_contract))
        return true;
    set<ContractDefinition const*> seen(_seenContracts);
    seen.insert(&_contract);
    for (auto const* c: _contract.annotation().contractDependencies)
        if (contractDependenciesAreCyclic(*c, seen))
            return true;
    return false;
}

Declaration const& TypeChecker::dereference(Identifier const& _identifier) const
{
    solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored.");
    return *_identifier.annotation().referencedDeclaration;
}

Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const
{
    solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored.");
    return *_typeName.annotation().referencedDeclaration;
}

bool TypeChecker::expectType(Expression const& _expression, Type const& _expectedType)
{
    _expression.accept(*this);
    if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType))
    {
        auto errorMsg = "Type " +
            type(_expression)->toString() +
            " is not implicitly convertible to expected type " +
            _expectedType.toString();
        if (
            type(_expression)->category() == Type::Category::RationalNumber &&
            dynamic_pointer_cast<RationalNumberType const>(type(_expression))->isFractional() &&
            type(_expression)->mobileType()
        )
        {
            if (_expectedType.operator==(*type(_expression)->mobileType()))
                m_errorReporter.typeError(
                    _expression.location(),
                    errorMsg + ", but it can be explicitly converted."
                );
            else
                m_errorReporter.typeError(
                    _expression.location(),
                    errorMsg +
                    ". Try converting to type " +
                    type(_expression)->mobileType()->toString() +
                    " or use an explicit conversion."
                );
        }
        else
            m_errorReporter.typeError(_expression.location(), errorMsg + ".");
        return false;
    }
    return true;
}

void TypeChecker::requireLValue(Expression const& _expression)
{
    _expression.annotation().lValueRequested = true;
    _expression.accept(*this);

    if (_expression.annotation().isConstant)
        m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable.");
    else if (!_expression.annotation().isLValue)
        m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue.");
}