#pragma once /** @file @brief Lagrange Interpolation @author MITSUNARI Shigeo(@herumi) @license modified new BSD license http://opensource.org/licenses/BSD-3-Clause */ #include namespace mcl { /* recover out = f(0) by { (x, y) | x = S[i], y = f(x) = vec[i] } @retval 0 if succeed else -1 */ template void LagrangeInterpolation(G& out, const F *S, const G *vec, size_t k) { /* delta_{i,S}(0) = prod_{j != i} S[j] / (S[j] - S[i]) = a / b where a = prod S[j], b = S[i] * prod_{j != i} (S[j] - S[i]) */ if (k < 2) throw cybozu::Exception("LagrangeInterpolation:smalll k") << k; std::vector delta(k); F a = S[0]; for (size_t i = 1; i < k; i++) { a *= S[i]; } if (a.isZero()) throw cybozu::Exception("LagrangeInterpolation:S has zero"); for (size_t i = 0; i < k; i++) { F b = S[i]; for (size_t j = 0; j < k; j++) { if (j != i) { F v = S[j] - S[i]; if (v.isZero()) throw cybozu::Exception("LagrangeInterpolation:same S") << i << j; b *= v; } } delta[i] = a / b; } /* f(0) = sum_i f(S[i]) delta_{i,S}(0) */ G r, t; r.clear(); for (size_t i = 0; i < delta.size(); i++) { G::mul(t, vec[i], delta[i]); r += t; } out = r; } /* out = f(x) = c[0] + c[1] * x + c[2] * x^2 + ... + c[cSize - 1] * x^(cSize - 1) @retval 0 if succeed else -1 */ template void evaluatePolynomial(G& out, const G *c, size_t cSize, const T& x) { if (cSize < 2) throw cybozu::Exception("evaluatePolynomial:small cSize") << cSize; G y = c[cSize - 1]; for (int i = (int)cSize - 2; i >= 0; i--) { G::mul(y, y, x); G::add(y, y, c[i]); } out = y; } } // mcl