#pragma once /** @file @brief Lagrange Interpolation @author MITSUNARI Shigeo(@herumi) @license modified new BSD license http://opensource.org/licenses/BSD-3-Clause */ namespace mcl { /* recover out = f(0) by { (x, y) | x = S[i], y = f(x) = vec[i] } @retval 0 if succeed else -1 */ template void LagrangeInterpolation(bool *pb, G& out, const F *S, const G *vec, size_t k) { if (k == 0) { *pb = false; return; } if (k == 1) { out = vec[0]; *pb = true; return; } /* delta_{i,S}(0) = prod_{j != i} S[j] / (S[j] - S[i]) = a / b where a = prod S[j], b = S[i] * prod_{j != i} (S[j] - S[i]) */ F a = S[0]; for (size_t i = 1; i < k; i++) { a *= S[i]; } if (a.isZero()) { *pb = false; return; } /* f(0) = sum_i f(S[i]) delta_{i,S}(0) */ G r; r.clear(); for (size_t i = 0; i < k; i++) { F b = S[i]; for (size_t j = 0; j < k; j++) { if (j != i) { F v = S[j] - S[i]; if (v.isZero()) { *pb = false; return; } b *= v; } } G t; G::mul(t, vec[i], a / b); r += t; } out = r; *pb = true; } /* out = f(x) = c[0] + c[1] * x + c[2] * x^2 + ... + c[cSize - 1] * x^(cSize - 1) @retval 0 if succeed else -1 (if cSize == 0) */ template void evaluatePolynomial(bool *pb, G& out, const G *c, size_t cSize, const T& x) { if (cSize == 0) { *pb = false; return; } if (cSize == 1) { out = c[0]; *pb = true; return; } G y = c[cSize - 1]; for (int i = (int)cSize - 2; i >= 0; i--) { G::mul(y, y, x); G::add(y, y, c[i]); } out = y; *pb = true; } #ifndef CYBOZU_DONT_USE_EXCEPTION template void LagrangeInterpolation(G& out, const F *S, const G *vec, size_t k) { bool b; LagrangeInterpolation(&b, out, S, vec, k); if (!b) throw cybozu::Exception("LagrangeInterpolation"); } template void evaluatePolynomial(G& out, const G *c, size_t cSize, const T& x) { bool b; evaluatePolynomial(&b, out, c, cSize, x); if (!b) throw cybozu::Exception("evaluatePolynomial"); } #endif } // mcl